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The techniques developed in Part 1 of the present series are here applied to two- 
dimensional solutions of the equations governing the magnetohydrodynamics of ideal 
incompressible fluids. We first demonstrate an isomorphism between such flows and 
the flow of a stratified fluid subjected to a field of force that we describe as ‘pseudo- 
gravitational’. We then construct a general Casimir as an integral of an arbitrary 
function of two conserved fields, namely the vector potential of the magnetic field, 
and the analogous potential of the ‘modified vorticity field’, the additional frozen 
field introduced in Part 1. Using this Casimir, a linear stability criterion is obtained 
by standard techniques. In $4, the (Arnold) techniques of nonlinear stability are 
developed, and bounds are placed on the second variation of the sum of the energy 
and the Casimir of the problem. This leads to criteria for nonlinear (Lyapunov) 
stability of the MHD flows considered. The appropriate norm is a sum of the 
magnetic and kinetic energies and the mean-square vector potential of the magnetic 
field. 

1. Introduction 
In this paper, we develop the approach initiated in Part 1 (Vladimirov & Mof- 

fatt 1995), in which new variational principles for magnetohydrodynamic (MHD) 
flows of an ideal incompressible fluid were established. For such flows, the mag- 
netic field h ( x , t )  is frozen in the fluid, but the vorticity field w ( x , t )  is not frozen 
since the Lorentz force is in general rotational. However, in Part 1 we iden- 
tified a ‘modified vorticity field’ w ( x , t )  (see (1.8) below) which is frozen in the 
fluid, and which reduces to w when h = 0. The existence of this additional 
frozen-in field has consequencies for the construction of Casimirs, the integral in- 
variants which play an essential role in the derivation of sufficient conditions for 
stability (or ‘stability criteria’) for steady solutions { U(x) ,  H ( x ) )  of the governing 
equations. 

We specialize here to two-dimensional flows (invariant under translations in the 
z-direction), and we demonstrate first certain helpful analogies (or more accurately 
isomorphisms) between such flows and flows of a stratified fluid in the Boussinesq 
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approximation. Analogies between stratified and rotating flows can be traced back 
to Rayleigh (1916) and have been placed on a firm basis by Vladimirov (1985a,b). 
The fact that an analogy may exist in MHD situations of the type to be considered 
here was already noted by Howard & Gupta (1962), but its precise nature has not 
been previously revealed. It was in fact through consideration of the analogy that the 
frozen field w was discovered in Part 1; we exploit the analogy further in the present 
paper. 

In the two-dimensional situation, we first show how the presence of two frozen 
fields, h and w, leads to determination of an appropriate Casimir as an integral over 
the fluid domain of a function of two conserved scalar fields (associated with h and 
w). We then follow the procedures of Arnold (1965, 1966) to obtain stability criteria. 
The linear criteria obtained in $3 are equivalent to criteria obtained previously by 
Holm et al. (1985). We then consider nonlinear stability of the steady state, i.e. 
Lyapunov stability with respect to a norm based on the total energy and the mean- 
square vector potential of the perturbed magnetic field. Here we go beyond the 
treatment of Holm et al. (1985) which we believe to be incorrect (see footnote on 
p. 195). We consider ‘isomagnetic’ perturbations under which the field is a ‘frozen- 
field’ perturbation of the steady state, and we obtain conditions (Criterion 4.1) under 
which the norm of the perturbation remains bounded by a constant multiple of 
its initial value for all time. We then extend the proof to cover arbitrary two- 
dimensional perturbations (Criteria 4.2 and 4.3); the difficulty here centres on the 
problem of appropriate continuation of functions describing the steady state beyond 
their initial range of definition; this difficulty is addressed in detail and is successfully 
overcome. 

We conclude this introduction with a statement of the governing equations. We 
suppose that the fluid is incompressible, homogeneous and ideal, i.e. inviscid and 
perfectly conducting, and that it is contained in a domain 9 with fixed boundary 
89. (We shall in general suppose that 9 is bounded, but the theory may be easily 
modified to deal with the case of an unbounded domain.) Let u(x,t)  be the velocity 
field, h(x , t )  the magnetic field (in Alfvin velocity units), p(x,t)  the pressure field 
(divided by density), and j = Vhh the current density in the fluid. Then the equations 
governing the evolution of these fields are 

D U G  a / a t + u . v  u =  -vp+ j n h ,  

Lh = ah/& - VA(UAh) = 0 ,  
( 1 

V - u =  V . h = O .  

Here D is the material derivative, and L the Lie derivative governing the evolution 
of a convected solenoidal field; the equation Lh = 0 implies that h is frozen in the 
fluid, its flux through any material circuit being conserved. 

We suppose that, consistent with (1.2), the field h is confined for all time to the 
fluid region; the boundary conditions are then 

We suppose further that at t = 0, the fields u and h are smooth and satisfy (1.3), but 
are otherwise arbitrary. 
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Equation (1.1) has the consequence that 

LW = V A ( ~ A ~ )  , (1.5) 

where w = V A U  is the vorticity field. This means that vortex lines are not frozen in 
the fluid when the Lorentz force j ~ h  is rotational. However, as shown in Part 1, a 
'generalized' vorticity field w may be defined as follows: let g(x , t )  be an arbitrary 
solenoidal field satisfying 

and let m(x, t )  be defined by 
v A ( g A h )  = 0 ,  (1.6) 

L m = j + g ,  V . m = O .  (1.7) 

Then the field w defined by 

w = 0 + V A ( h A r n )  

satisfies 

L w = O ,  (1.9) 
and provides the appropriate frozen-field generalization of w for ideal MHD flow. 
Note that, since h and w are now two independent frozen-in fields, it follows that 
V A ( ~ A W )  is also frozen-in (Tur & Yanovsky 1993), and by iteration, an infinite family 
of such derived frozen-in fields may be constructed. 

The global invariants of the system (1.1)-(1.4) are the total energy 

€tot = l ( u 2  + h2)dz , 

the magnetic helicity 

X M  = ( h  - curl-'h)dz , l 
the cross-helicity 

(1.10) 

(1.11) 

(1.12) 

and the 'generalized' helicity 

Xw = l w * c u r l - l w d z .  (1.13) 

The three helicities are all topological in character (Moffatt 1969) and are automati- 
cally conserved under the procedures developed in the following sections. 

2. Isomorphism between two-dimensional MHD and stratified flow 
Suppose first that u and h are invariant under translations in a fixed direction, 

which we may take to be the direction O z  of a Cartesian coordinate system Oxyz. 
The domain 93 is then cylindrical with unit normal on 3 9  

(2.1) 

(2.2) 

n = (4, n2,O) ; 

the fields u and h may be decomposed in the form 

u(x, y ,  t )  = u + u3ez , h(x, y ,  t )  = b + h3e, , 
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v = Vn(lye,), b = V n ( p e , ) .  (2.3) 
Here, y (x ,  y, t )  is a streamfunction for the (x, y) components of u, and p ( x ,  y, t )  is 
a flux function for the (x ,y )  components of h. The z-components of vorticity and 
current are given by 

q = u, = -v2y , @ =  j ,  = - v 2 p .  (2.4) 

The choice of notation here is deliberate, for reasons that will be apparent below. 
The z-components of (1.1) and (1.2) now become 

DU3 = -{P,h3}  2 Dh3 = - { P , U 3 }  , (2.5) 

{.,b} = a(a ,b) /a(x ,y )  * (2.6) 

DV = -Vp" - p V @  , D p  = 0 , (2.7) 

u a n  = 0 ,  p = const. on 8 9  . (2.8) 

where we use the notation 

Defining p* = p + ;hi - p @ ,  the (x, y) components may be written 

and the boundary conditions (2.4) become 

Note that the fields ( ~ g , h 3 )  do not appear in (2.7) which may therefore be considered 
independently of (2.5). When a solution { u , p }  of (2.7) is known, the corresponding 
evolution of (u3,h3) is then given by (2.5). 

Equations (2.7) with boundary conditions (2.8) are evidently identical with the 
equations and boundary conditions governing two-dimensional flow of an analogue 
Boussinesq fluid with density p ( x ,  y, t )  in a 'pseudo-gravitational' field of potential @. 
Only the dependence of @ on p (equation. (2.4)) looks unusual: in a self-gravitating 
fluid, we would have V 2 @  = - p ;  here, by contrast, we have 

v-2@ = - p  (2.9) 

and this is why we use the term 'pseudo-gravitational'. The main point however is that 
MHD flows with translational invariance are isomorphic to flows of a Boussinesq 
fluid with body-force potential @ = -V2p.  Stability techniques that are familiar in 
the stratified flow context can be readily adapted to MHD problems, as we shall now 
demonstrate. 

3. Linear stability criteria 
We now consider a steady solution of (2.7) in the form 

where the functional form of p is implied by Dp = 0. Capital letters will be used 
throughout for properties of the steady state whose stability is to be investigated. In 
this state, 

(3.2) 
The curl of (2.7) simplifies to the equation 

( V  V)(Q - A'( Y ) J )  = 0 , (3 .3)  

b = B = A ' ( Y ) V .  



Magnetohydrodynamics of ideal ju ids .  Part 2 191 

where 

Q = -V2Y , J = -V2A. (3.4) 
Hence we have the generalized Grad-Shafranov equation (see e.g. Biskamp 1993) 

- V 2 Y  +A’(Y)V2A = G(Y)  

for some function G( Y ) .  
Now consider (1.6)-( 1.9). These are satisfied by taking 

(3.5) 

where 

D m  = -V2p + g ( p )  

D w  = 0 ,  w = q + { p , m }  

and 

In the steady state, (3.7) implies that 

w = W V ) ,  W ( Y )  = -V2Y + (VZA - g ( A ) ) A ’ ( Y )  , (3.9) 

and comparison with (3.5) shows that 

Also, from (3.7), m = M ( x ,  y )  where 

v * V M  = -V2A + g(A)  . 

(3.10) 

(3.11) 

The function g(A)  may be chosen to ensure that M is single-valued in 9: if 9 is 
bounded, then the streamlines Y = const. are closed curves in 9, and we define 

g ( A ( Y ) )  = / 1 VI-’V2pd&/ / 1 Vl-’d/. (3.12) 

(If 9 is unbounded, then on any streamlines that are not closed, we simply choose g 
so that g(A)  is a smooth function of A ;  if no streamlines are closed, we take g = 0.) 

Under general unsteady evolution, both p and w are conserved fields ( D p  = D w  = 
0);  hence the appropriate Casimir is 

Y =const. Y =const. 

,- 

(3.13) 

where dz = dxdy, and F ( p , w )  is an arbitrary smooth function of p and w. If 9 
is not simply connected, i.e. 8 9  consists of separate closed components (external 
or internal) 89i ( i  = 1,2, ..., n), then we must also take account of the ‘circulational 
invariant’ 

(3.14) 

where the yi are arbitrary constants. Each Ti is constant because j ,  = e, A b is parallel 
to Vp, i.e. to n, on each 8gi. 

Consider now the functional 

B { y , p , m }  =b+%?+r, (3.15) 
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8 = i l ( u 2 +  b2) dz (3.16) 

is the conserved energy of the fields { u ,  6) .  The dependence of 9 on rn enters through 
W. Let 6y ,  6p, 6m be independent variations, and let 

6u = V.(Gye,) , 6 q  = -V26y . (3.17) 

From (3.8b), the first- and second-order variations of w are then 

6lw = 6 q  + {A,  6m} + {6p, M }  , d2w = {dp, 6m} . (3.18) 

The first variation of 9 is easily calculated: 

d 1 9 =  {VY . 6 V p + V A . V 6 p + F A 6 p + F w 6 ' w ) d z + ~ y i ~  6ued8, (3.19) 

where FA = dF(A,  W)/aA,  Fw = dF(A,  W)/aW.  From here on, F and its derivatives 
are always evaluated at p = A, w = W .  By standard manipulations using (3.11) and 
(3.18a), and the boundary condition 

6 p = O  on 8 9  (3.20) 

I i=l agi 

(3.19) converts to 

6 1 8 = / b ( F w + Y ) * V 6 v +  ( F a - g ( A ) ) d p +  ( F w + Y ) { 6 p , M } ]  dz 

We now choose F(A, W )  and yi so that 

d 1 9 = 0 .  

A natural choice is given by 

Fw = -Y , FA = g(A) , yi = Yj , 

(3.21) 

(3.22) 

(3.23) 

where Y i  is the constant value of Y on agi .  These equations obviously do not 
determine F(A, W )  uniquely; the remaining freedom in F will be used later. Note 
that, by differentiating (3.23a,b) with respect to Y ,  we obtain 

(3.24) 

Consider now the second variation of 9, given by 

d 2 9  = 1 { (6u )2  + (v6p)2 + F w ~ ( 6 l W ) ~  + 2F,4w6pd1W + F A A ( ~ ~ ) ~  + 2Fwd2W} dz. 2 l  (3.25) 
By standard manipulations (see Appendix A), this may be expressed in the form 

J 2 9  = ;I{ (V(Sy-06p)) 2 + ( 1 - 0 ~ ) ( V ~ p ) ~ + X ( ~ p ) ~ + F ~ ~ ( 6 ' ~ - - ~ 6 p ) ~ ) d . i ,  dW 

(3.26) 
where 

a = Y'(A) (3.27) 
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and 
VY*VQ-VA*VJ 

X =  + oV2 o (3.28) 

(Recall the definition (3.4) of Q and J.) 
Now according to the general theory of Arnold (1965, 1966), if g is extremal 

(maximum or minimum) for all admissible variations (6y,  dp, 6m) then the system 
considered is linearly stable. Here, &? is minimal at ( Y ,  A, M )  if d 2 9  is positive-definite, 
and this is certainly true provided 

F w w > O ,  0 2 a ,  x > o ,  (3.29) 

throughout $3. We satisfy the first of these by using the remaining freedom in the 
choice of F(A, W ) :  let 

F(A, W )  = Fo(W) + W F l ( A )  + F2(4 9 (3.30) 

where Fo, F1, F2 are smooth functions such that 

F;(W) > 0 , FI(A) = -Y - FA(W) , F2(A) = g(A)  - WF;(A)  . (3.31) 

(Recall that Y = Y (A) ,  W = W(A) . )  Then (3.23a, b)  are satisfied. We thus obtain the 
following stability criterion : 

CRITERION 3.1. The steady $ow (3 .1)  is linearly stable provided 

(3.32) 1 ( Y ~ A ) ) ’  < 1 (or equivalently ~2 < ~ 2 1 ,  

vy * vQ - VA * vJ + Y’(A)V2 Y’(A) > 0 

throughout $3. 

The first condition means that the flow must be sub-Aljivknic; the second places a 
constraint on the degree of misalignment of the fields ( Y ,  Q) and ( A , J ) .  Note that, if 
the unperturbed state is magnetostatic (i.e. Y = 0), then (3.32) reduces to 

dJ/dA d 0 .  (3.33) 

As indicated in the introduction, the criterion (3.32) is equivalent to that obtained 
by Holm et al. (1985, p. 41) who based their treatment on the use of a Casimir 

@ = / (qFdp)  + FdP,) dz 9 (3.34) 
9 

where q is the vorticity field. Since Dq # 0, there is little a priori reason for this 
choice. However, it happens that 

(3.35) 

where ” ( p )  = Fl (p ) ,  and the latter integral vanishes by an application of Green’s 
theorem in the plane, using p = const. on 89. Hence, in fact, using (3.8b), 

@ = J ( w ~ i ( p )  + ~ 2 ( p ) >  dz , (3.36) 
9 

and the invariance of 3 follows from Dp = Dw = 0. 

conditions (3.32). 
We conclude this section with two simple examples that may help to clarify the 
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Example ( i ) :  plane parallel jield and flow 
Suppose that A = A ( y ) ,  Y = Y ( y )  for 0 d y d L, so that 

v = V(y)ex  > B = B(y)ex (3.37) 

with V ( y )  = dY /dy, B ( y )  = dA/dy. Then the conditions (3.32) reduce to 

B2 2 V 2 ,  I 
(3.38) 

for 0 < y < L. These conditions may be considerably strengthened by noting that, 
under Gallilean transformation x’ = x - Vot, t’ = t ,  V transforms to V - V, while 
B is invariant. If the state (V(y), B(y ) )  is stable in any frame of reference, then it is 
stable in all frames related by such Gallilean transformation. Hence the state is stable 
if there exists a value of V, such that the inequalities 

are both satisfied. For example, if V ( y )  = y2, B ( y )  = y for 0 < y < 1, then (3.38) is 
not satisfied, but (3.39) is satisfied if V: > 1. This state is therefore stable. 

Example ( i i ) :  flow with circular streamlines 
Suppose that, with polar coordinates ( r ,  Q), 

A = A(r)  , Y = Y ( r )  (a  < r < b) (3.40) 

so that 

V = V(r)ee , B = B(r)ee , 
with V ( r )  = -Y’(r), B(r )  = -A’(r). In this case, the conditions (3.32) reduce to 

(3.41) 

B2 2 V 2 ,  

15 {(I-;) i $ ( r B ) } + i $  (;) > O }  B dr 
(3.42) 

for a < r < b. Note that for the case in which the field B ( r )  is produced by a current 
confined to the region r < a, we have rB = const. and (3.42b) reduces to 

(3.43) 

Remarkably, this is precisely Rayleigh’s (1916) criterion for the stability of axisym- 
metric flow to axisymmetric perturbations. Here, we are concerned with MHD flow 
subjected to plane non-axisymmetric perturbations; the fact that the same criterion 
emerges is pure coincidence! 

Again, the criterion (3.42) may be improved by considering a frame of reference 
rotating with angular velocity Q0 say. In this frame, V ( r )  is replaced by V ( r )  - rQO, 
but B(r )  is unchanged. The state (3.41) is thus linearly stable to pertubations in the 
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plane of the flow provided there exists any value of QO such that the inequalities 

B dr r dr 

are simultaneously satisfied for a < r < b. 

4. Nonlinear stability criteria 

steady solution (3.1), given by 
Consider now a Jinite-amplitude (but still two-dimensional) perturbation of the 

w = Y ( x )  + @(x, t), v = V ( x )  + Z(x, t), p = A(x)  + P(x, t), x = (x,y) E 9 , (4.1) 

so that the constant values of p on a g i  (i = 1, ..., s)  are unchanged by the perturbation. 
Let A- = min9A(x), A+ --= max9A(x), and let d be the closed interval [A- ,A+].  
Let us introduce the notation 

= (vl ,  v2, v3, v4, vs) (@X, @)J, P X ,  PJJ, P )  . (4-3) 

To measure the deviation of the perturbed solution (4.1) from the unperturbed one 
(3.1) we shall exploit the norm (or, more accurately, seminorm) given by 

llv112 = vividz = l{ (V@)? + ( V p ) 2  + p2}dr . (4.4) 

We adopt the standard Lyapunov definition of stability: the steady state (3.1) is stable 
if for any E > 0 there exists 6 > 0 such that Ilv(0)II < 6 3 Ilv(t)II < 6.t 

x E 9 , a E d ; 

For the subsequent analysis it is convenient to define the following functions : 

a(x,a) = -Q(x)!P”(a) + Zl‘(a) , (4.54 
P(a) = -Y”(a) , o(a) = Y’(a) , a E d ; (4.5b) 

(4.5c) 

where e(a)  - Y’(a)G(Y(a)), with G ( Y )  given by (3.5). It is also useful to introduce 
notations, related to these functions: 

a-(x) = min a(x,a) , a+(x) = max a(x,a) , x E 9 , (4.5d) 
a e d  { }  a E d  { }  

(4.5e) 

t This nonlinear stability problem has been considered (among many other cases) by Holm et 
al. (1985, p. 42). We believe however that their treatment of the inequalities required to obtain 
convexity estimates is incorrect, and that the resulting stability theorem (p. 44) is therefore invalid. 
However, the error does not affect the validity of the nonlinear stability criteria obtained in two 
particular cases (Alfven solutions for which V ( x )  = B(x) ,  and magnetostatic equilibria for which 
V ( x )  = 0). 
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4.1. Isomagnetic Perturbations 
Consider first a particular class of finite-amplitude perturbations with general initial 
data for the streamfunction @(x, 0) and with initial data for the flux function (density) 
from the interval d: 

A- < p ( x , O )  < A +  . 

A- < p ( x ,  t )  < A+ 

(4.6) 

(4.7) 

Note that if (3.48) is satisfied then, according to (2.7b), 

for all t > 0. Such perturbations may be imagined as obtained at the initial instant 
t = 0 by displacement of fluid particles from their position in the unperturbed state 
(3.1), the value of the flux function p for each fluid particle being unchanged. For this 
class of ‘isomagnetic’ perturbations we shall obtain the following nonlinear stability 
criterion : 

CRITERION 4.1. Suppose that: ( i )  the function A ( Y )  defined by equation (3.2) is in- 
vertible and the inverse function Y (A)  is twice continuously diferentiable for  all A E d; 
( i i )  the function @4) = Y’(A)G(Y(A) )  (where G ( Y )  is given by (3.5)) is continuously 
diferentiable for  all A E d; (iii) there exist constants e-, e+ such that, for  a E d ,  
x E 53, 

o < e- < 1 ,e+ > 2 - e- ; ly’(a)l < 1 - e- ; ( 4 . 8 ~ )  

2 2 
a - w  - A€- , Po, %) (B(x)) > e- 3 a+(x) - A€+, Po, no) (w) < e+ . (4.8b) 

Then the steady state (3.1) is nonlinearly stable to perturbations with initial data sat- 
isfying (4 .6) .  Moreover, the following a priori estimate holds true: 

e-Ilv(t)ll d E.+IIV(O)II . (4.9) 

Proof: Following the prescription of Arnold (1966) we decompose the conserved 

9=90+91+B2,  (4.10) 

functional 9 = 8 + %‘ + I‘ in the form? 

90 = l { ~ ( V Y ) 2 + ~ ( V A ) 2 + Q F ~ ( A ) + F 2 ( A ) } d ~ + ~ y i j  asi Vsdk‘, 

91 = 1 { VY - V@ + VA VP + [QFI(A) + F;(A)] P - -FI(A)V2@}dr 

(4.11) 
i=l 

9 

(4.12) 

2 

9?2 = l{ (V@)’ + $ ( V P )  + + k2(P) - (FI(A + P )  - F1(A))V2@}ds , 

(4.13) 

with 

Fa@) = F,(A + p )  - F,(A) - Fh(A)P ( a  = 1,2) . (4.14) 

t The functional W used here is the same as that introduced by Holm et al. (1985) (see $3 above). 
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We choose the arbitrary functions F l ( p ) ,  F2(p) and the constants yi such that 

F1(A) = -Y (A)  , Fi(A) = Y’(A)G Y ( A )  @A)  , yi = Yi , 0 (4.15) 

where G ( Y )  is given by (3.5). With this choice the functional 91 (corresponding to the 
first variation of 9) vanishes in the steady state (3.1). Since 90 does not depend on 
time we conclude that 9 2  is an invariant of the exact nonlinear problem (2.5)-(2.8). 

Let us now transform 922 to a form that is convenient for the subsequent stability 
analysis. Integrating the last term in (4.11) by parts and using (4.2b) we obtain 

- / 9 (Fl(A+P)-F1(A))V2ijjdz = / 53 { (Fi(A+P)-FI(A))VA.Vijj+F~(A+P)V~.VP}dr.  

Substituting in (4.1 3) and using Taylor’s formula with remainder in Lagrange’s form, 
we find 

where 

and where we have used the fact that, according to (4.54 b), (4.15), 
a. = A + P ,  al = ~ + e ~ p ,  a2 = , 4 + e 2 p ,  (4.174 

F ~ ( u )  = -o(u) , F[(u)  = /?(a) , Q ( x ) F ~ ( u )  + F ~ ( u )  = E(X, a)  (4.17b) 

for all a E d. In (4.17a), 191, %2 are functions of A and p such that 

o < el < 1 ,  o < e2 < 1 .  

Note that for perturbations with initial data in the range (4.6), ~ , a l , a 2  E d. Using 
the notation (4.3), equation (4.16) may be written in the form 

r 

where Rik  are elements of the symmetric 5x5 matrix 

1 0 -CT 0 PA, 
1 0 -CT PAy 

PAX PAY 

If the positive constants e- and e+ in the conditions (4.8) are such that 

vividr d 292 d E+ vividz, 

(4.18~) 

(4.18b) 

(4.19) 

then the a priori estimate (4.9) and hence the nonlinear stability of the flow (3.1) 
follow immediately from the fact that 9 2  is an invariant of the exact nonlinear 
problem (2.5)-(2.8). The stability analysis therefore reduces to obtaining upper and 
lower bounds for 92. Obviously, the inequalities (4.19) are satisfied provided that the 
two quadratic forms (Rik  - e-6k)ViVk and (e+6ik - Rk)ViVk are positive definite. The 
necessary and sufficient conditions for this are 

(4.20~) 
e - < 1 , 02(a) < (1 -e - )2 ,  +,a)  > e- +p(e-;p,+2, 
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FIGURE 1. The function f ( ~ )  defined by equation (4.26). 

and 

E+ > 1 , 02(a) < (1 - E + ) ~  , a(x,a) < E+ + p  e+;P,a B 2 ,  (4.20b) 0 
where p(A; P ,  (T) is given by (4.5~). 

take E+ and e- such that 
Let us now show that (4.20a,b) are satisfied under the conditions (4.8qb). First we 

0 < E- < l-lool, 2-E- < .+ < co. (4.21) 

These inequalities define a domain 4 in the plane ( E - , E + ) .  If e-,e+ E 4 then the 
inequalities (4.20) are also satisfied and, in addition, 

(4.22) 0 < A€- ; P, (T) d A - ,  Po, 0 0 )  9 0 > P(E+ ; P, 0) 2 P(f+ ; Po, 00) * 

Next we suppose that there exist e-,e+ E 4 such that 

E -  +~(E-;PO,(TO)B~ < a- (x ) ,  E + + ~ ( C + ; P O , ( T O ) B ~  > a+(x), (4.23) 

where a-(x), a+(x) are given by (4.54 and hence 

E- + p(e-; P, o)B2 < a(x, a) < e+ + p ( ~ + ;  P ,  (T) . (4.24) 

Hence we have shown that the conditions (4.21), (4.23) are in fact sufficient for all 
six inequalities (4.20a, b)  to be satisfied. The conditions (4.21), (4.23) are equivalent to 
the conditions (4.8a, b). Criterion 4.1 is thus established. 

Consider now the existence of constants E - ,  E+ satisfying the conditions (4.8) of 
Criterion 4.1. It is convenient to rewrite the inequalities (4.8b) in the form 

a-(x) > f(e-1,  .+(4 < f ( E + ) ,  (4.25) 

where 

P2B2 
1-E 

f ( € )  = 6 + 
(1-€)2- 00 O 

(4.26) 
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The graph of f(e) (see figure 1) consists of three branches, denoted by 1, 11 and 111. 
From (4.8~)  it follows that 

0 < E- < 1-1001, €+ > l+la,l, (4.27) 

so that E -  lies on 1 and E+ on 111. The condition (4.25~) is satisfied for any e < e; and 
(4.25b) is valid for E > E?, where e; and e? are points on the first and third branches 
of the graph corresponding to f(e;) = a- and f(e?) = a+ respectively. Figure 1 also 
shows that a constant E - ,  satisfying the conditions (4.8), does exist provided 

(4.28) 

while a constant e+ always exists for any given E -  and a+. We can now formulate the 
following : 

COROLLARY. The steady state (3.1) is nonlinearly stable to perturbations with initial 
data (4.6) provided 

(4.29) 

for any constant A > 1, where a-(x), PO, 60 are given by (4.5d,e). 

involving the inequalities (3.32). 
The criterion in this form admits comparison with the linear stability criterion (3.1) 

4.2. General perturbations 
The inequalities (4.8) or (4.29) give sufficient conditions for nonlinear stability of (3.1) 
only with respect to perturbations with initial data satisfying (4.6). We consider now 
a general situation when the perturbations are quite arbitrary (without the restriction 
(4.6) on the initial data). Let a; and a t  be the minimum and maximum values of the 
function a(x,a) for all x E 9 , a  E d, i.e. 

- 
a. = min a(x,a) = mina-(x) , a+ = max a(x, a) = max a+(x) . (4.30) 

x c 9 , a E d  X € 9  O - x€g,acd X€.9 

We shall obtain the following nonlinear stability criterion. 

CRITERION 4.2. Suppose that: ( i )  the same conditions (as in Criterion 4.1)  hold 
concerning smoothness of functions Y ( A )  and 6 ( A ) ;  ( i i )  there exist constants c-, E+ 

such that, for  a E A,  x E 9, 

o < 6- < I ,  e+ > 2-6- ; l y ~ ( a ) l  < I - - - ;  (4.31~) 

a, - A€-, Po, 00) (Bc.1) > f- , a t  - A€+, Po, 00) (B(x)) < E+ ; (4.31b) 

(iii) either the function IFi(a)l = lY'(a)/, defined for all a E d, attains its maximum 
value at some internal point of d or it attains its maximum value at one of the end 
points of d and at that point Y"(a)  = 0, i.e. 

either max Y'(a) = Y'(a') , A- < a' < A + ,  (4.32~) 

a* = A -  or a* = A +  ; (4.32b) 

then the steady state (3.1) is stable to arbitrary finite-amplitude perturbations and the 
a priori estimate (4.9) holds true. 

2 2 

a e d  I I /  I 
or a c d  I l l  I max Y'(a)  = Y'(a*) , " " (a ' )  = 0 ,  
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ProoJ To obtain this criterion it is sufficient to show that the inequalities (4.20a, b) 
hold provided the conditions (4.32) are satisfied. For arbitrary perturbations, however, 
the quantities ao, a1 and a2, defined by equations (4.17a), may be outside d. The 
inequalities (4.20a, b) must therefore be satisfied for all real a. 

The functions a(x,a), P(a) and o(a) in (4.20) are considered now as defined by 
(4.17b), so that, according to (4.15), for a E d, the new definitions coincide with the 
old ones (4.5a, b). Initially F l ( a )  and &(a) were arbitrary and then were defined only 
for a E d by (4.15). Hence, Fl (a )  and F2(a) are still arbitrary for a $! d. We can 
therefore extend the definition of Fl(a)  and F2(a) to all real a in any way we need 
and then extend the definition of a(x,a),  P(a) and o(a) using equations (4.17b). 

It can be shown (see Appendix B) that under the conditions of Criterion 4.2 it is 
always posible to continue Fl (a )  and F2(a) to all a $! d in such a way that, first, they 
remain twice continuously differentiable and, second, the inequalities 

a; < a(x, a) = Q(x)F;’(u) + F;’(u) < a$ , (4.3 3 a) 

(4.33b) 

(4.33c) 

remain valid for all a $! d. Then the proof of Criterion 4.2 reduces effectively to that 
of Criterion 4.1. 

If neither (4.32~) nor (4.32b) is satisfied then the function IY’(a)l attains its maxi- 
mum value at one of the end points of d and at that point Y”(a)  # 0, i.e. 

max Y’(a) = Y’(a*)  , Y”(a*) # 0 ,  a’ = A -  or a* = A +  . (4.34) 
a c d  I I /  I 

In this case it is impossible to make a sufficiently smooth continuation of Fl (a )  for all 
real a such that the inequality ( 4 . 3 3 ~ )  holds true. It may be shown, however, that it is 
possible to continue Fl(a) and F2(a) to all a $! d in such a way that the conditions 
(4.334 b) remain satisfied and the conditions 

I.(a)( = jF;(a)j < 1 - € *  , jool < 1-€* < 1-€- (4.35) 

hold instead of (4.33~). In this situation the following stability criterion may be 
obtained. 

CRITERION 4.3. Suppose that: (i) the function A ( Y )  defined by equation (3.2) is in- 
vertible and the inverse function Y ( A )  is twice continuously diflerentiable for all A E d; 
(ii) the function ?;(A) = Y ’ ( A ) G ( Y ( A ) )  (where G ( Y )  is given by (3.5)) is continuously 
diflerentiable for all A E d; (iii) there exist constants E - ,  e+, E* such that, for a E d, 
x E 9, 

0 < €* < E- < 1 ,  €+ > 2-€ -  ; p ( a ) l  < l - € * ;  (4.36) 

2 2 
a; - A€-, Po, 1 - € 8 )  ( B ( x ) )  > E- , a$ - &+,PO, 1 - e*)  (B(x)) < €+ . (4.37) 

Then the a priori estimate (4.9) holds, and the steady state (3.1) is stable to arbitrary 
jinite amplitude perturbations. 

The proof of Criterion 4.3 is analogous to that of Criterion 4.1. 
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5. Conclusions 
In this paper, we have applied the general principles developed in Part 1 with the 

aim of obtaining linear and nonlinear stability criteria for steady two-dimensional 
MHD flows of an ideal fluid. In the unperturbed steady state, both velocity and 
magnetic field are non-zero, and (in $53 and 4) attention is restricted to the fields 
which have components only in the x- and y-directions. Moreover, stability is 
considered with respect to two-dimensional perturbations. 

The use of the frozen-in ‘modified vorticity field’, whose existence was proved in 
Part 1, has proved useful in constructing an appropriate Casimir. This has been used 
in 93, by techniques which are now standard, to obtain a linear stability criterion. This 
criterion was obtained previously (by Holm et al. 1985) but the present treatment 
sheds new light on the problem. 

In $4 we have developed procedures first proposed by Arnold (1965, 1966) to obtain 
nonlinear stability criteria. We have considered first ‘isomagnetic’ perturbations, 
i.e. perturbations from the steady state under which the magnetic field is frozen, 
and the vector potential of a material fluid particle is therefore conserved. This 
assumption leads to the stability Criterion 4.1, which admits comparison with the 
earlier linear stability Criterion 3.1. We then considered arbitrary initial perturbations 
(unconstrained by the isomagnetic condition) which requires continuation of the 
functions determining the steady state outside their initial domain of the definition. 
We have successfully overcome this difficulty, and hence obtained the general stability 
Criterion 4.2. 

Much remains to be done in this area, particularly the testing of these stability 
criteria through computational experiments. This is the subject of a continuing 
investigation. Similar techniques can also be applied to axisymmetric steady states 
(Vladimirov, Moffatt & Ilin 1996), and to states involving helical symmetry. 

The work was supported by UK/Hong Kong Joint Research Grant JRC 94/24 
and Hong Kong UPGC Research Infrastructure Grant RI95/96.SC08. 

Appendix A. Derivation of equation (3.26) 
From (3.18b), (3.23), the last term in (3.25) may be written as 

Applying to this formula the identity 

we find 

4 = -2 6p{6m, Y }  - 2 1 
= 2 

= 2 1  a6p(6‘w - 6q - {dp, M})dr using (3 .18~~)  

E b p { A ,  Gm}dz using (3.20) 

dY 
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Note that 
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M}dz = s, % { ( d ~ ) ~ ,  M}dz 

= / (6p)’{  M, %}dz using (Al), (3.20) 

= / 
9 

d2Y dA 
--(-V2A+g(A))(Sp)2dz dA2 dY using (3.11). 

Substitution of (A2) ,  ( A 3 )  in (3.25) results in 

[FAA - 
From (3.9), (3.24), we obtain 

Substituting (A5) into (A4) and using (A6) we find 

6% = is, [ (V6y) 2 + (V6p) 2 + %(6‘W a2F - 

aul VA.V(V2A) - VY *V(V2Y) 
aA 

+2-6pV26y + ( 
Also, we have 

1 dY 2 dY 2 dY dY k(gdp,l’ = [ ( dA) dA dA dA 
V- ( 6 ~ ) ~  + (--) (V6p)’ + -V- - V(6p)’ dz 

= L[ (a) dY 2 ( V ~ P ) ~  - dY da(V2a)(6p)2]dr  dY integrating by parts. 

(A 8) 

Finally, after integrating by parts the third term in (A7) and using (A4) we arrive at 
equation (3.26). 

Appendix B. Extension of the definition of functions Fl(a) and Fz(a) 

a > A+. Continuation to all a < A- can be achieved in a similar way. 

F;’(A+) > 0, (ii) F;’(A+) < 0, or (iii) F;’(A+) = 0. 

It will be sufficient to construct explicitly a continuation of Fl(a) and F2(a) to all 

Suppose that ( 4 . 3 2 ~ )  is true. Then three different situations are possible: (i) 
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(i) If Fr(A+) > 0, we define Fl(a) for a > A+ such that 

F;(a )  = Fi(A+) + FI’(A+)---f--  
1 + W l Z  

where 

It is easy to see that, with this definition, Fl(a) is twice continuously differentiable for 
all a 

z = a - A +  , y1 3 F;’(A+)/(l - Iool - Fi(A+)) > 0 . (B 2) 

A+ and satisfies (4.33~). Note that 

< FI’(A+) (B 3) 
1 

F;(a) = F;’(A+) 
(1  + W1z)2 

for all a 2 A+. Hence, (4.33b) is also satisfied. 
With Fl(a) given by (B l), we choose the function F2(a) for a > A+ in such a way 

that (4.33~) is satisfied. Before doing this, let us introduce functions &-(a) and &+(a) 
such that 

&-(a) = min a(x, a) , &+(a) = max a(x, a) (B 4) 

(B 5 )  

X€Y X € Y  

where a(x, a) is still given by (4 .5~) .  From (4.30), (B 4), it is obvious that 

“0 < &-(a) < a(x,a) < &+(a) < a; . 
Also, from the definitions of &-(a) and &+(a) it follows that 

Fr(a)  rnin Q(x), if Fp(a) > 0 

F f ( a )  max Q(x), if F[(a )  < 0; 

Fr(a )  max Q(x), if Fr(a)  > 0 

F:(a) rnin Q(x), if Fr(a)  < 0. 

&-(a) = F;(u) + 0, if Fr(a )  = 0 (B 6 )  { 
{ 

and 

&+(a) = F l ( a )  + 0, if F;(a) = 0 (B 7) 

(B 8) 
X € B  

Since in our case F;’(a) > 0 for a 2 A+, we have 

&-(a) = F i ( a )  + F:’(a) rnin Q(x) , &+(a) = F t ( a )  + F:/(a) max Q(x) . 
X€$B 

Now for all a > A+ we take F2(a) such that 

F i ( a )  = &-(A+) - F;’(a) rnin Q(x) 
X € Y  

where Fl(a) is given by (B 1). With this choice, F2(a) is twice continuously differentiable 
for all a 2 A+ and from (B 8) 

&-(a) = &-(A+) 2 a, , a 2 A+ . (B 10) 

(B 11) 

Also from (B8) we obtain 

&+(a) = &-(A+) + F;(a) (ma, X € 9  Q(x) - rnin X€Y Q(x)) . 

&+(A+) - &-(A+) = F;(A+) (ma, X € Y  Q(x) - rnin X € Y  Q(x)) . 
From (B 1 l), we have 

(B 12) 

Eliminating & we find 

&‘(a) = &+(A+) - (F;(A+) - F;(u)) (maxQ(x) X€Y - minQ(x)) X € Y  . (B 13) 
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Finally, since Fr(A+)  2 Ff(a) for all a 2 A+ we obtain 
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&+(a) d &+(A+) d a, . (B 14) 

The inequalities (B lo), (B 14) are valid for all a 2 A+ and coincide with (4.33a), so 
that our continuation satisfies all the conditions (4.33). 

(ii) If Fr(A+) < 0, then for a > A+ we define Fl(a)  such that 
Z 

F;(a )  = F;(A+) + F;(A+)- , 
1 + w2z 

where 

It is easy to verify that with this choice Fl(a)  is twice continuously differentiable and 
satisfies (4.33b,c). In the case under consideration, F[(A+)  < 0, and hence from (B6), 
(B 7) we have 

w2 = -F;(A+)/(l - 1 Q 1  + F;(A+))  > 0 . (B 16) 

&-(a) = F:(a) + F;(a) max Q(x) , &+(a) = &';(a) + F;(a) min Q(x) . 
X € 9  X € 9  

We choose the function F2(a) for a > A+ such that 

F:(a) = &-(A+) - F;(a) max Q(x) (B 18) 
X € 9  

where Fl(a) and &(a) are given by (B 15), (B 17) respectively. It may be shown that 
F2(a),  defined by ( B  18), is twice continuously differentiable for all a 2 A+ and that 
the inequalities (4 .33~)  are satisfied. 

(iii) If Ff(A+) = 0, then we take Fl(a) for a > A+ such that F;(a)  = Fi(A+) and 
Fz(a )  such that F l ( a )  = F;I(A+), so that equations (4.33) are satisfied. 

Suppose now that (4.32b) is true; then, as in case (iii), we take F;(a)  = F;(A+) and 
F;(a) = Fl(A+) ,  and the inequalities (4.33) are satisfied. 

Thus, we have shown that a smooth continuation of the functions Fl(a)  and F2(a) 
to all a such that the conditions (4.33) remain satisfied can be constructed. 
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